

Flavomycin®

Flavomycin® decreases antibiotic resistance

1. Flavomycin® decreases antibiotic resistance

Antibiotic resistance can be acquired via transfer of extrachromosal DNA located on plasmids. Those plasmids are called R-factors and can encode for multiple drug resistance. Plasmids pass from one bacterium to another trough bacterial conjugation (pilus) (Fig 1).

Fig 1 without Flavomycin®

Fig 2 with Flavomycin®

Flavomycin® decreases antibiotic resistance by

- 1. Reducing the conjugation transfer of plasmids (Fig 2)
- 2. Having enhanced activity against plasmid containing bacteria = plasmid curing effect

Below the conjugation efficiency of 3 broad spectrum beta lactamase *E. coli* plasmids are depicted for various Flavomycin® concentrations.

donor:recipient ratio = 1:2

■ 0 µg/ml ■ 4 µg/ml ■ 64 µg/ml

E. Coli 2

donor: recipient ratio = 1:5

Flavomycin® reduces the horizontal spread of plasmids under high and low resistance pressure.

E. Coli 3

E. Coli 1

2. Trials

2.1 Flavomycin® decreases the antibiotic resistance of Salmonella spp.

Trial:

- 6 weeks old pigs inoculated with 2.5*10¹¹ multi resistant Salmonella typhimurium
- Treatments: negative control: 10 pigs
 - Flavomycin® 4.4 ppm: 10 pigs
- Faeces samples at 21 days post infection
- Salmonella susceptibility was tested

Percentage of pigs with Salmonella resistant strains 21 days post infection

Flavomycin® reduces the number of pigs carrying multi-drug resistant Salmonella.

2.2 Flavomycin® decreases the antibiotic resistance of *E. Coli*

Trial:

- Fattening pigs inoculated with three multi resistant nonpathogenic *E. Coli* strains
- Treatments: negative control: 56 pigs
 - Flavomycin® 9 ppm: 56 pigs
- Faeces samples before infection and 12 weeks post infection
- E. Coli susceptibility was tested

Percentage of resistant *E. Coli* at the start of the study and 12 weeks later

Oxytetracyclin

Ampicillin-Oxytetracyclin

Flavomycin® reduces the number of multiple drug resistant *E. Coli*.

2.3 Flavomycin® reverses previously generated antibiotic resistance

Trial:

- 20-weeks old pigs
- Day 0 till day 21 of study:
 - Chlortetracyclin-Sulfathiazole-Penicillin (100-100-50 ppm): 30 pigs
 - Lincomycin (100 ppm): 30 pigs
- Day 21 till day 42 of study: stop antibiotic treatment: all pigs
 - start Flavomycin® 4 ppm: all pigs
- Faeces samples day 0, 21 and 42 of the study
- MIC-values for *E. Coli* against Ampicillin were tested

MIC-values for *E. Coli* against Ampicillin from pigs previously exposed to antibiotic treatment

Flavomycin® reverses MIC-values increased by antibiotic treatment.

3. Characteristics of Flavomycin®

- No acquired resistance against Flavomycin®
- Exposure of bacteria to Flavomycin® does not result in cross-resistance
- Flavomycin® is used solely as a feed additive
- Flavomycin® has no therapeutic use in humans
- The unique mode of action of Flavomycin® is not shared by any agent used in human medicine

Conclusions

Flavomycin®:

- reduces conjugation transfer of plasmids
- has enhanced activity against plasmid containing bacteria
- reduces antibiotic resistance of Salmonella spp.
- reduces antibiotic resistance of E. Coli spp.
- reverses previously generated antibiotic resistance
- causes no resistance or cross-resistance

